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Introduction:
The objective of this work is to investigate the impact of F T o o i i S !
depth-supervised loss on both training time and aster raining i

performance. While the Depth-supervised NeRF paper
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demonstrated the effectiveness of depth-supervised loss g quality

in reducing training time for static scenes, our study aims 0.7 - . 3?)(
to evaluate whether this approach can be applied to —
dynamic scenes. To achieve this goal, we incorporated the —— None
ds-loss into the Neural Scene Flow Fields model and o
conducted experiments with different loss combinations.
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